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APPROXIMATE JOINT PROBABILITY nISTRIBUTIONS OF THE T[JRBULENCE
ALONG A HYPOTHETICAL MISSILE TRAJECTORY
DOWNWIND OF A SINUSOIDAL MODEL RIDGE*

by

Erich J, Plate*, F. F. Yeh

and

R.

ABSTRACT

The wind field 's investigated which is encountered by a missile
traveling along a hypothetical trajectory downwind of a two-dimensional
-idg. Reasons are given for studying this situation in a wind tunnel,
The rrublem is reduced to the determination of turbulence spectra and of
joint probabilities for the joint occurrence of two velocities simultane-
ously along the trajectory which corresponds to mean flow conditions.

In the theoretical part an attempt is made to obtain approximations
to the joint probability density distributions which yield to experimental
evaluazion. The experimental part is concerned with measurements of pro-
filcs of mean velocities and turbulent intensities and with the . 2termin-
aton of turbulence data for evaluating spectra and joint probability

' dist rtiut ions.

i

A prcti; iunary version of this report has been preseted at the Unguided
Bai'Hstic Missile Meteorology Conference, Las Cruces, Oct. 1 Nov. 2,
.Jo 7.
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Chapter 1

INTRODUCTION

1.1 The Problem

One of he major problems in predicting the target hitting capabilities
of unguided rocket propelled missiles flying in the atmospheric boundary

laver is the interaction between the missile and the turbulent wind field
alo'g its flight path. In the analysis of missi'le weapon systems, es-
pecially th,',e used in short range (0-1 kin) applications, predicting
target hit probability caused by gust winds, involves prior knowledge
_F the wind field along the missile's trajectory. We can formulate
this problem as follows: if the trajectory of a missile is given by a
deterministic curve determined by mean-wind conditions, we must find the
probability distribution of the perturbations of the trajectory end point
if the missile encounters random velocity fluctuations during its travel
along the trajectory. The fluctuations influence 'he flight path in two
ways. Vibrations, caused by tbe gust spectrum might occur, and the missile
might be deflected from its course by large velocity fluctuations. For
obtaining instantaieous wind measurements to calculate trajectories in a
turbulent wind field, the present experimental study was undertaken.

ive chose the wind tield which exists in the wake downwind of a two-
dimensional obstruction with air flow separation at the downwind slope,
as shown in Fig. 1. The sinusoidal obstruction used in this study repre-
sents the model of a ridge. The wind field which exists in the wake of
a ridge is of interest in military cu,;uat applications since ridges have
been used as part of a defensive line against an attacking force. If
missile launchers are emplaced alG.,g a ridge, the target impact dis-
persion of missiles caused by the turbulent winds on the lee side of the
ridge will play a considerable role in battlefield strategy.

A full account of this wind field is difficult to obtain in the
field. The number of data points at which wind speed information is
required is large, and the variability of wind speeds in natural envi-
ronments would require elaborate and costly experimental equipment.
Therefore, it was suggested to study the wind fields that might be
encountere downwind of a sinusoidally shaped hill in the controlled
environment of a laboratory where many needed data can be taken one

{ after another instead of simultaneously, and where the reliability of
measuring instruments and data analysis equipment has reached a high
level.

In this report, we shall concentrate only on the problem of ob-
taining an approximation to the joint probability distribution for I
a sequence of instantaneous velocity vectors along some hypothetical

trajec'")ries. The analytical considerations are based on assuming cer-
tain models for joint probability distributions. The validity of these
distributions for the disturbed flow field downstream of -. ridge is
demonstrated by means of experimental data obtained in the wind tunn1.
The observations were made for a steady mean velocity field obtained by It



blowing air parallel to a flat plate perpendicularly onto a model ridge

of sinusoidal shape.

1,? Considerations on Modeling

The crucia. problem in applying laboratory results for practical
applicaticns in a natural environment is the question of scaling labora-
tory conditions up to field dimensions. For flows of undisturbed bounda-
ry layers, such as the wind along a boundary of constant roughness over
a long fetch, the modelin, has been achieved beyond reasonable doubt by
scaling according to the ratio of the roughness heights, and by keeping
the shear velocities oconstant. With these conditions met, both the mean
velocity conditions and the turbulence structure are approximately scaled.
For a boundary layer flow which is disturbed by a sharp edged obstacle,
Plate and Lin (1965) have presented an argument, based on the boundary
layer integral momentum equation, that the same parameters together with
the drag coefficient of the obstacle (as referred I-- some convenient
velocity, such as the geostrophic wind velocity.), suffice to model the
inedn velocity field. As far as the turbulence structure is concerned,
no equivalent conclusions are as yet forthcoming, but some work by
Plate and Lin (1966) has pointed at the possibility that the modeling
of the dissipation number is an additional requirement. Moreover, no
conclusions have yet been reached on how the turbulence structure would
be affected if this number is not modeled accurately. Work is in progress
on this point at Colorado State University. It is reasonable to suspect

that modeling requirements will result in a scale factor for the dissi-
pation rates which does not differ very much from that for the mean

velocity.

With this as:umpLion made, translation of laboratory data to field
data is a simple problem, provided that the drag coetficient of the
obstruction can be estimated. The procedure would be to determine the
roughnes length and the geometrical pattern of the natural bituation,
and then to prepare a scale moo 1 of it in the laboratory, setting the
roughness length ii the laboratory at a convenient level by artificial
roughening of Lhe wind tun -l boundary As long as the dimensions of
the obstruction are such that it lies .,,ll within the lowest 1000 to
2000 ft of the atmosphere, and as long as the wind velocity is such
that the gross Richardson number of the prototype is not essentially
different from zero, and as long as t1," model is sharp edged, so that
the separation line is fixed, the condition in the laboratory should be
similar to that in the field

h h(-) - ( h ) )
z Z0model 0 field

In this equation, h is the height of the obstruction and z is the
roughness height. 0

For an obstacle which is not sharp edged, such that the separation
line moves with change in velocity, the Reynolds number affects the drag
coefficient, and compensations will have to be made for this effect. A
possibility exists in artificially tripping the boxzndary layer on the
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obstruction so as to induce turbulence locally and fix the boundary
layer separation line. However, such refinements have not been used in
this study, which is intended to fu-nish qualitative information rather
thae quantitative design data and, in that case, it is unnecessary to
substantiate the small improvements in similarity which can be had by
artificially ipducing separation on the model hill. Thus, the problem
of scaling need not concern us in this study, especially since a com-
parison with field data is not possible at this time. !'e shall, there-fore, formulate our nroblem in more detail without regard to scaling.

I
I

I

IL"
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Chapter I

THEORETICAL CONS IDERATIONS

The two essentially different problems which arise in considering
the interaction of missiles and turbulent wind fields are that of missile
flight stability, and that of impacL dispersion. The difference of these
two problems can best be illustrated hy considering the flight of a missile
through a homogeneous velocity field of infinite extent. A missile which
flies at constant speed encounters a spatially random velocity field which
is, with respect to a coordinate system traveling with the missile, con-
verted into a random and stationary time series of the continuous variable:
velocity. If the missile has a transfer function lH(w) , then the missile
response velocity spectrum s (w) is related to the impact wind-gust
spectrum 4w (w) by the relation of

(W )  H()2 (w )  (

Thus, since the transfer fl-c Lion !H(w)( is a deterministic function,
?ld since 0 (w) for an infinitely long stationary record denotes the
exact average behavior of the wind field, M (,o) is also an exact average
measure of the missile response. If none of the response amplitudes ex-
ceed the stability limit of the missile, ther. only some fluctuations of
the missile occur; if some do exceed the stabi.lity limit, the missile
miht change course drastically and miss its target by a wide margin.
The sability can usually be evaluated on the bais of the average be-
havior expressed by Eq. 2. In this paper, we shall provide experimental
data on wind spectra, which can be used for missile stability calculation
purposes.

In contrast to stability, the dispersion of a missile results from
an integrated effect of all the velocities which are acting on the missile
in its course along the missile trajectory. Since these velocities are
fluctuating from instant to instant, and can be described only in a proba-
bilistic way, the missile dispersion cannot be predicted determinis.ically.
Instead, the missile dispersion problem is the problem of determining the
probability distribution of the missile trajectory end point as a function
of the sequence of all the velocities which the missile encountered along
the trajectory. The distribution of the end point of the missile then
bi-co es a function of the joint probability distribution for all the
vulocities along the missile trajectory.

In this report, we shall disregard the characteristics of the
missile and shall concentrate on an attempt to describe the joint proba-
bility distribution for the velocities along some hNpothetical missile
trajectories in a simplified manner. The theoretical ideas will he
developed in this chapter. They lead to a p -gram of measurements of
probability distributions which was performed In the Fluid \kl,'chanics
Laboratory of Colorado State Universitv.



Since it is impossible to obtain the true joint probability dis-

tribution for all velocity vectors along any trajectory, a simplifying
procedure has to be adopted. We irzaed by introducing some simplifying
assumptions wiLkh represent the *urrule - e encountered by the missile
by the instantaneous turbulence existing -long the mean trajectory.
Furthermore, the trajectory is subdivided into sections and it is assumed
that the turbulence in each section can be represented by the turbulence
at the end points of the sections. For the ensuing sequence of velocities
at the section :nd joints, the joint probability density function is then

con> :11cced and broken down into a product of functions which can be
determined by means of available experimental techniques. No attempt
will be made to apply the ensuing functions to the missile dispersion

problem.

2.1 Basic Assumptions

The problem of evaluating the instantaneous missile trajectory is
approached in the following way. Let the mean trajectory of a missile be
given, and use the reference coordinate system as shown in Fig. 1 fo- our

problem. Then on its travel along the trajectory the missile encounters
mean velocities and a sequence of gusts, both described by a velocity
vector v(s;t) , where t is the time of flight, and s is the position
.etor of the trajectory. The velocity ector consists of a mean v--locity
(s) and a fluctuation in velocily v (s;t) . The position vector con-

sists of a mean position vector I corresponding to an absence of all
velocity fluctuatins (i.e., the trajectory due to mean wind only) and
a small deviation 3 -s due to the sequence of fluctuating velocities
which the missile has encountered during the time t

Now, let the tr,'el time until impact be equal to t. and the end
point of the mean wind trajectory be located at x . Ten due to the
sequence of windi fluctuations encountered during A~s flight, the missile
is deflected in the impact area by a total deviation r' from the target
distance x Due to the random nature of the fluctuations encountered,
the r' wiYl dlso be randoml, distributed. The probability distribution
of the quantitv r' is the desired quantity to which the results of this
study must be appled

The meteorological problem associated with finding the probability
disf.ribution of r' is to make avai lable knowledge of :ie instantaneous
vel,.citv field which the issilv mii'ht encounter on its course. Clearly,
this problem cannot be solved bN presently avai lable techniques. In-
stead, it is proposed to obtain Joint probability distributions for the
simultaneous o)ccurrence of a sequence of velocity vectors along the
missile trajectorv. In general, this requires specifying joint proba-
bility distributions of the joint occurrence of velocities at infnitely
many di ffe'rent points in space and tine. In order to reduce this problem
to trlictable dimensions, a number of assumptions have to be made.

The first assumption is that the distance of any instantaneous
tra jectory from the mean tra iectorx calculated oM the hasis of the
mean wind distribution is small, so that

V'(St) v' t) ,



In this manner, it is no longer necessary to consider the Thole space
but one can concentrate on the single trajectory. Obviously, tho \'alidjtv

of this assumption depends both on the relative magnitude of vI with
respect to v and on the res-onse characteristics of the ,,, ssile ,ind
will have to be tested each tinmc.

The second assumption concerns the time distribution. ', e assui:',e
that the missile travels much faster than the velocity fluctuates, so
that

v'(§;t) - v' (s;t) (3

where t denotes the st.,:-t time. This assumption implies that Juria1
the fligAt time the relation holds:

(s;t) v0 ( ;t 0 )

or that, in the average for n different starting times t 0

n + n

L v'(S;t) v'( 't .) _. (v,( ;t
i=l i=l

If the flow is stationary, and if the ergodic hypothesis is valid, then
we can restate this requirement as:

R 
14)

where

R is the autocerrelation function defined by:

S v ' ( ; :t 0 !t - t 0 ) •d 0(? d

X 0'
0

where

T i an ohse.rvxtion t ,ne ta-,n long enough to ensure a st Ti"e
ave rage, and

t -t is the t ic du'-ing which the ',iss i Ichs raveled rrom
x to o
0

onr r tirWc t '-Oe e

model 0 field
reduces to t M t fo od, I

rn field I
0o t~eld
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For small tiims t -t Fq. 4a becomes:x 0

(tx-to ) :

IX - (4b)

where is the microscale of the turbulence. The scale X can be
g g

replaced to a good approximation by the scale X of the u-componentg
of the turbulence

- 1 au' 2

g 2 u-, - tat (t 0

Consequently, it follows that t x-t << A for the assumption Eq. 3x o g
to be valid.

2.2 Simplifications of the Probabilistic Problem: connecting proba-
bilities along trajectories.

We base our calculations on assumptions Eq. 2 and Eq. 3, and, thus,
we have reduced the meteorological aspects of the problem to finding
simultaneous instantaneous velocity distributions along the mean tra-
jectory x . To avoid the implied necessity of determining velocities
simultaneously at infinitely many different points, we adopt the follow-
ing probabilistic specification of the velocity field. The required
quantity is the joint probability density distribution

f. = fGv' , v' v1
J o 1 2 2... .. .. v (6

for all n points along the mean trajectory. The experimental distri-
bution of f. requires simultaneous measurements at all n points of

the trajectory, i.e., it requires an infinite array of probes placed along
the trajectory. Evidently, this is an impossible task, so that instead,
the trajectory is cut into n finite intervals, of length Ax , at
whose end points turbulent quantities are measured. In each interval

Ax -x- i+l- x the instantaneous velocity is assumed constant and equal
to:

V! = u,+ v'J + w" k (7)1 1 1

when the components u , V. and w! are average values of the velocity
components at the two nd poiAts. From the values o" v. , the tra-
jectory is calculated.

The problem to be solved then is to convert probability distri-
butions between adjacent points in such a way that a meaningful approxi-
mation for Eq. 6 is found. We want to investigate three smiple cases
of possible approximations for Eq. 6.
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a. Consider first the assumption that f(v' ) and f(v')

are statistically independent. This condition coiresponds to v "ocities

which vary comparatively rapidly along the trajectory, in the sen,:e that

R ; 0 where R is the spatial correlation coefficient obtained from

t~e definition x

S x i + l ',,xz-x) v' xi ) dx

R = Xi} _ 1 
(8o) (to '

x i+l INx _r (8)
i /v, 2 (tox.) v' 2 (t ox i l )

However, the assumption of rapidly varying velocities is in contradic-

tion to the assumption of a velocity vector which is constant throughout

the travel interval Ax , unless Ax is chosen in such a way that a

meaningful relation bctween it and the space integral scale 's exists,
where:

7S f o Rdx (9)
1

Also, in order to be of influence on the flight pattern, J¢s must be

large compared to the length dimension L of the missile, 'uch that a

condition for the validity of this assumption might be defined as:

Ax s and L. << 1 say <0.1 (10)

thder these circumstances, Eq. 6 reduces to

( ..... f(v n 1 f(' (11a)o .... Vn-_ n)1 n

or in terms of conditional probability densities:

v 1 1 -1 , -2 . -I - )= f(Vi!) (11b)

This equation can be evaluated conveniently, if the probability density
distributions f(W) are given. These correspond to joint probability

densities for thos variables u , v! and w.' , which will be
discussed below in Section 2.3. 1 1 1

b. As a second possibility, we considered the condition

Is > X e-Xo

in which case the correlation coefficient defined by Eq. 8 assumes a
Xalue very near to 1. This implies that the velocities v1(t, x.)
vI (to 0xi+ I ) are very nearly proportional, so that

V'(to, xi+ l A' (to, xi) (12)
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where A is a (vector) constant. Furthermore, the jpdf defined by
Eq. 6 becomes:

f(C °  , ,- (13a)

v 1 V . . . . n- ' n

or in terms of conditional probability densitic

v' , V! . . . . . . ) = 1 (13b)

Again, the discussion of a method for calculating f(vo) is postponed I
until Section 2.3. !

c. The assumption of a and b bracket the possibilities for
-simplifying the joint probability density functions of the turbulence
along the trajectory. An intermediate method, based on the assumption
that the eddy structure of the turbulence is highly elongated, (as is
usually the case in turbulent flows) would combine assumptions of in-
dependence of the motions perpendicular to the mean wind direction with
an assumption of some dependency of the components in the wind direction
along the trajectory. The simplest way is obtained if a Markoff de-
pendency can be found to relate probability density distributions along
the trajectory, i.e., if

f(v! v-l , ., ) f( I V ) (14)

when f(V'! ' !) is the conditional probability density for the

occurrence of V! when v' has already occurred.
1 i-I

The elongated eddy structure leads us to assume that what happens
at point x. depends on the happenings at xi_ only through the u!-ii 1

component, i.e., the components v! and w! are independent of alli .

components at the point x._ except inasmuch as they depend on u!
which in turn depends only on the component u' and not on v and
w Write Eq. 14 in the form:i-1

f(v1 I v-) -- f(u' I u 1 ) f(v! I u!) f(w! I u!, v) (15)

where f(w' u! v!) denotes the conditional probability density for
finding w; when both u! and v! are assumed to occur also.11 1

We can now summarize the results for the three approximations of
Eq. 6 as follows:

!ndependence (Case a)

f(N! - V! 2..v) f(Vt)

so that

f(vi , . v o ) = f(v i ) f( ) f(v)



Dependence (Case b)

-f(v ! V ! ...1- -2.)1 1

I 1 i-1 i - 2* "

so that

f(vi' vi-I' Vi-2 ... o

Markoff dependency (Case c)

f~v v'f -,. i-
1 [-1 ' 'i-2 . .. = 1; iV '

so that

f(vi, Vi 1 , v1 . .v ) = f() f(v v). f(v y

0...1.0o1 i-I

whic, simplifies further for the elongated eddy case to Eq. 15.

2.3 Simplification of the Probabilistic Problem: joint probability

densities at a point

All three cases discussed above require the determination f

probability density distributions of the form: -f(v!) . Since v!

is a vector consisting of three compo::ents, f(v.') is actually a 1
11joint probability density function for the joint occurrence of u!

v! and 4 ! Such a triple joint probability density function is too
difficult io determine experimentally. We, therefore, write

f(u!, v., w!) = f(u!) f(v! u!) f(w I u!, v!) (16)

1 1 1'I 1

in the form

f(u!, v!, w!) = f(u!) f(v! u!) f(w!) (17)
1 1 1 1 1 1"

and Eq. 14 '-n the form

f(v' I v!) f(u! ul) f(v! I u!) f(w!) (18)

which are based on the following assumptions:

a. The velocity component w! is statistically i.-dependent oF

all other velocity components.

b. The connection between adjacent points takes place only through

u! and is at most first order Markovian.
1

Assumption a. is partly justified because the homogeneity of the

turbulence in planes parallel to the ground, in a two-dimensional flow

field, requires that the tine average product u! w! = 0 which is a

necessary, but not a sufficient condition for statitial independence.



"'he first part of assumption b. is postulated .ithout any firm
basis exIcat for tijo motion of an elongated eddy stated previously.
[or the second part, howeve- we have some support, both from meteor-

oiogiral data as well as f.r the laboraterv case of the present study.

For a \!arkoff _'apendency to exist, it is a necessary and sufficient
condition that, if' the variables u are "tationarv with respect to i
and Gaussian, :rd are a'so J intly aussian distributed, then -he cross
correlation hette, u! u u-+2 is an exponential function

in the parameter i 9p. 96-, Feller (i964) r. 234, Doob (l S3 i- . e., in
the cont i nuous paramotcr case

) (19)

where ..\ has a non-ne'at ive real part, if R(x) is known to be con-
tinuous. Conv'ersely, a sequence with stationary Gaussian distributions
satisfving Eq. 18 is 'Iarkovian and Eq. 14 can thus be used.

The applicahility of a Mlarkoff process to turbulence data is thus
insured if it can be shown that

a. the space correlations are homogeneous, i.e., independent

from where the correlation starts.

b. the space correlations are exponential.

c. the probability density distributions for the functions repre-
senting u' are Gaussian.

Some proof for the validity of these cornitions for our laboratory flows
will be given in the next chapter. For atmospheric turbulence in neu-
trally stratified atmospheric boundary layers over homogeneous terrain,
these conditions are approximately satisfied. In the older meteorological
literature (for reference see Pasquill (1961)) the autocorrelation functions
were usual',' Found to be exponential. Together with Taylor's hypothesis,
according to which time correlations can be translated into space corre-
lations by means of the substitution t = x (where 0 is the local

mean velocity), it can thus be shown that space correlations are expo-
nential. Meteorologists have in recent times (Lumley and Panofsky (1964))
preferred to use different analytical representations of the correlation
functions, for the simple reason that the spectrum corresponding to ai
exponential autocorrelation decreases at large values of angular fre-
quencies w proportion;l to w-, whereas the spectral shape should
contain an inertial subrange, with a drop-off proportional to w-5/3
The diFference between 5/3 and 2 is, however, not large enough to
give a strong reason for discardin', the assumption of dii exponential
decay of the autocorrelation function. For our prediction purposes, it
does, therefore, seem to he justified to assume that an exponential auto-
correlation fulccion exists in neutrally stratified atmospheric boundary
lavers over homogeneous terrain. In a later section we shall show that'
an appruximateix exponential space correlation function which is homo-
gencou along trajectories parallel to the ground can be found even in



the highly disturbed flow fieid downwind from a model ridge. Since 1,e
also find that almost all velocity components follow Gaussian distribu-
tions, the Markoff dependency postulated for Eq. 15 is reasonably well
established experimentally.

2.4 Some Considerations on Gaussian Two Variable Joint Probability
L~ns itv runctions.

Then the joint probability density functions of the quantities of
turbulence at one point are g1aussian, then this distribution function is
fully specified by the means and the turbulence quantities u-
v " = - , ' as well as by the cross correlations, for example,

u'v' v These quantities are most important also in describing the dy-
namic conditions of the turbulent flow, i.e., they represent stresses,
and it is, therefore, of interest to show the connection between the
probability density functions and the stresses.

Theoretically, if all the probability densitie.z of indi-.idual
turbu!ont components are distributed in a Cauzsia , fo, ,, then:

f(u') 1 e u

2a

uu

f(v') - e (20)

v I

- (w-V )2

12o2

f(w') =e 
w' 2

The joint densities of two turbulent components can be expressed by a
joint Gaussian form, i.e.,

f(u',v') 1 e Q(u'PV) (21)
27 11U C /1-02

for some constints ou, 0 . aV > 0 , 0 < I , < M II <

S< m < + in which the functicn Q(u', v') for any two real

nuIT~erk ul and v' is defined by
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hr u - u v-y "' ]
2 (1< 1 1V L V -\ UY \ Uix j v,!

where P is the correlation coefficient -= , Ut andulrr -12 1/g7-2u

are the variances of u and 0 , respectively, and mu and

m are the mean values. The czurve Qlu', v'! = constant is an ellipse

since j 1

in order to find thc orientation of the ellipse, the coordinates

u* and v* of the coordn:'te system parallel to the axes n the
e1'ipse"

u* = U' COS + V1 sin

V* = -U sin + v1 cos (22)

!I
are introduced. Applying the Jacobian transformation to the probability
density, Eq. 20, we obtain

f(u*, v*) = f( u'I,v )

u v(23)

= f(u*cos C7 v* sin 6, u* sin 0 + v* cos e)

which follows from the fact that the Jacobian:
GU* G*

U
t 

O
v

O U I'V ) =ov* Ov I
og u OV'

For further sim-licity, we may assume m,= mn,= 0 then,

f(i*,v) 1 ex cs 2  2 cosOsinO +

2-ju I~ (I I 20lo') ut 2u 10V

2(24)

coso sin, s ii. coso sinO * *

-
0u' vv 2(-+ 'u / u°

+ s in ' + 2o ot sinO +_COS'_ ,

u 
u'*
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because of the symmetry of the ellipse with respect to the nei, axes, the
terat involving u* v* should vanish, i.e.,

cosO sine sin 2O- cos2e cos9 sine--p - = 02 G G 2

2Uo u3 O Vor 2pau, v (25)

tan 20 U
Ul -uV

This can be written in terms of the turbulenxt stresses by means of the
relations:

cov (u',v') _ T,
Out OvI GOUVIv

and

out = u2i OV = vt2

.2U 'V I 26
.. tan 2e =v(26)

uv2- vt2

With this relationship, the joint density function of the turbulent com-
pc-ents can be defined once we have the values of the associated turbu-
lent stresses. For example, the Eq. 18 can be established by measuring

U!21  U.2  V!2 , w' 2 , 1! N and u!- u! For its application,
1- 1 1 11 111 1

we have, however, to show that the individual components are Gaussianly
distributed and that the joint probability distributions follow Eq. 19.

We notice in passing the equality between Eq. 26 and the inclination
of the plane ofziro shea stress in a plane stress state of classical
mechanics, if u' 2  and v' 2 are the normal stresses and u'v' is the
shearing stress (due to turbulence). Clearly, then, the angle e denotes
the orientation of a plane at a point in a fluid when the shear stress is
zero, so that the joint probability distribution is found to be oriented
with the long axis of the ellipse of constant correlation parallel to the
zero shear stress plane.
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Chapter III

EQUIPMENT AND PROCEDURES

x.1 The Experimental Setup

The experiments were performed in the U.S. Army Meteorological
Wind Tunnel in the Fluid Dynamics and Diffusion Laboratory of Colorado
State University. This facility is shown in Fig. 2. It is a recir-
culating wind tunnel with an 88 ft long test section with a 6 x 6 ft 2

cross section. For the experiments of this study, the model hill was
placed at a distance of approximately 40 ft downstream from the inlet
where the undisturbed boundary layer, stimulated by large roughness
elements in the inlet region of the test section, had an undisturbed I
thickness of about 24 inches. The model hill consisted of a plexiglass
section with a shape n given by

x1 x < 1
v h cos - for - - -(i " 2 L 2(27)

where the base width L = 20 in. and the height h = 4 in. Th'- velocity

outside of the undisturbed boundary layer was 30 fps.

3.2 Measurement of Mean Velocity Profiles

Mean velocity profiles were measured both by hot wire anemometer
and pitot tube, in order to obtain a cross check. In the upper part of
the flow, continuous traverses of velocity were taken. In the lower part
or in the separation region where the variability of velocity was large,
point by point data were taken in order to determine the velocity pro-
files more precisely.

The hot wire measurement of mean velocity was made with a 4 x 10- 4
inch diameter single wire which was held perpendicular to the local mean
velocity vector . The hot wire anemometer used was made at CSU.

By means of the pitot tube, total head readings were obtained for
calculating mean velocities. If there is no pressure gradient in the
flow field, the ical mean velocity can be calculated by

1 o0 2  j
T a AB (28)

pressure difference between the static tap and
dynamic tap of a pitot static tube.

But in th: neighborhood of the model ridge, large pressure gradients
exist, not only in y-direction but also in x-direction. Since the
static tap is one inch downstream from the dynar.ic tap on the pitot
tube, a correction must be applied for the pressure gradient between
the two taps. Since
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LpU2 =APA (PA- P (29)
2 a AB B

p = density of air at the room temperature
a

U local mean velocity

A PAB =the measured pressure difference

PA - the static pressure at dynamic tap's position

PB = the static pressure at static tap's position

P A- PB = pressure difference between the static tap and the
dynamic tap.

If P - P is know.,, the local mean velocity at one point can be cal-
A B

culated from Eq. 29. At each point the value of PA - PB can be ob-

tained from Fig. 3. This figure was made by connecting the static tap

and a reference tap to the pressure transducer (Transonic Type 120 Equibar).

Since the static tap is one inch downstream from the dynamic tap, at one

point the coordinates of the dynamic tap is known, say (x y) then

the static tap is (x1 + 1, yl) When the coordinates oWtwo points are

known the pressure difference PA P8  can be obtained from Fig. 3 and

the corrected mean velocity at that point can be calculated by applying

Eq. 29.

To measure the mean velocity profiles the pitot tube and the hot

wire were mounted on a 24 inches vertical carriage. The dynamic tap of

pitot tube and hot wire were held side by side at the s..me height. The

velocity profiles were taken every two inche downstream from te crest

up to x 18 i and also at x i 24 he, 36 dt, 40f e

The block diagram of set up is shown on Fig. 4. The calculation of

tae mean velocity is listed on Table I and the results are on Fig. 5.

When a hot wire was used to measure the mean velocity, the cali-

bration curve of this wire was checked from time to time and the wire was

recalibrated if excessive drift of an anemometer was detected. It was

fotmd that after a hot wire had aged several hours the drift of the wire
was negligibly small.

3.3 Measurement of Turbulent Quantities

For coordinates of the flow field as shown in Fig. I, the turbulent

components at a point in x, y, z directions are u', v', w', resnectivelv.

The u'-compunent was calculated from a single hot wire held parallel

to z axis (Fig. 6). The v'-component was calculated from a crossed

wire held in the x-y plane (Fig. b).
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In the subsequent discussion, we shall use the following notation:

u = '  v = v and

w z is the rms value of the fluctuating velocity component
in the x, y, z direction, respectively

u covariance of the fluctuations u' and v'

e , 
= ,e , , are the rms values of The fluctuating

voltages e and e' measured with

;.re No. 1, or 2, respectively.

a. Calculating of u-component of turbulence.

To calculate the u-component at one point, say, (x 1 , y1 ) we need

the following information:

1. , rms value of a single wire at (x, y),

2. the calibration curve of this wire,

3. the local mean velocity 0 at (x, Y)
dE

4. the slope of the calibration curve dE at iT then:
d dE

e u

or

S, dL e (30)

h u-component at a piit (x, 01 was cal ibrated by Eq. 30.

1). Calcul atinga v and 11v components of turbulence.

If the crossed wire is held in the x-y plane as shown in Fig. 7,
then we find in gcneral that

dE -_ _ _ _ _

dIV Wcos~ +v 'sn *(31)Co dFCi'c s i

12 - o o - v'"sin a)'

where i l cad ;ire thC CkS!eS f the 12 irat ion JrVe for wire I

and ir' . :v, ectlvv!% Fqu_-at ion 31 can be Written as



=18

el2 Cii' 2 cos (a + '-'1v' cos a sin a + v'' sin'a)

, (32)
•dE 2

2 _ 1 2 '2

e2  -I (u2  Cos + cu'v' Cos B Sin ( + 2-2 JU'
cos2B

In order to account for small deviations of mean velocity vectors from
the horizontal we write:

a = 45 +

= 45

where € is the small deviation of the angle between the mean velocity
vector and the horizontal, as determined from the streamline patteni.
Then, for small , , so that rms in can be neglected, and
cos¢ 1 , sin¢ ;

o(45 + L) - 1- )

COS2 a" CO OS"

1133

sin a in (1+;

.1
S in- -,I ' +

also

CSn ; - "kI CO : - r -

CIS

sindl' ,

Substituting 1 q. _5,; i.,nto Fu. 32Yields

JU = '-r- :1 u'v' + +' { - :

u" [ - ; * u\ + v" Lx

dU ! :  I --- ,

The difference of Eq. 34 and Lq. 3 then vieis

1 d! .l dU"
CV= e ,, - : - , -' "

+ U" v" I
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Inserting Eq. 36 into Eq. 34 leads to

2 Fe2( ) 2dU e 2 (~)j -U2  (37)

*[e (2 dU 2 2d

Since, in our experiment both wires were of the same lr-igth, the slope of
the calibration curves of both wires for the same U ',.'re the same, i.e.,dU dU d
atapoint dU u Then Eq. 37 becomes

v2 = (d 2 2 + e2
2 ) _u2 ( (de) 2 .e 2 ) (38)

and Eq. 33 yields:
. d. )-e2 *) + I(u 2 - v2) (39)

Substituting Eq. 38 into Eq. 39

-12, dU 2
u 1 (el2- 2) - 2 v 2  

(40)

If = 0 i.e., the velocity vector is in x-direction. Eq. 38 becomes

v2  i dU (e1
2 + 022) - u2  (41)

and Eq. 40 yields:

1 dU 4) 2
UV - (el2- e 2

2  (42)

Equation 41 and 42 are the well-known equations on calculating 77 and
v2 when the velocity vector is in the x-direction. ,ut, in our study
when the wind is flowing over the hill the velocity vector may deviate
from the x-direction. Therefore, Eqs. 38 and 40 were k-;ed to calculate
the 1uv and v2  when 0 I 0 . The angle 4 at on. point was
estimated from the streamline pattern shown in Fig. S. How the stream-
lines were determined will be discussed later.

For crossed wires, when € = 0 i.e., when the i-locity vector is

parallel to the x-axis, the angles of inclination etw, en wire I and
wire 2 and the x-axis are the same and equal to 45 (b th wires were very
carefully mounted perpendicular to each other)6  In or 'r to make sure
that both wire 1 and wire 2 were held under 45 to x-a is during the
experiment, first, the wires were held in the free str, .im, when the
(ambient) velocity is in x-direction. Then, the cross 1 wires were
rotated 1800 about the hot wire probe axis. If the ou outs of the wires
were different after this rotation, an adjustment in t -, angle of the
probe with flow direction was made until the anemometer readings of both
wires were invariant to rotation about the longitudinal axis.
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The block diagram of the set up for measuring the turbulence is
shown in Fig. 8. A single wire and a crossed wire were mounted side by
side at the same height on a 24" vertical carriage. The elevation of
wires could be read off as a voltage across a potentiometer geared to
the positioning shaft and was either read out from a digital voltmeter
(DWI) or plotted on an x-y plotter. At each section, data were taken
at 55 test points shown in Fig. 9. Also, at each station x = constant
continuous data profile plots were obtained on an x-y plotter. The
test points were chosen so that they included:

a. points on the trajectory, i.e., points on the trajectories
at the distances x of the measuring stations,

b. points near where the maximum change of rms value of u'

occurred in each section.

At each of the test points the following data were taken:

a. The rms values, i.e., the fluctuations in voltage of a single
wire and of two crossed wires. All three rms values were re-
corded by x-y plotters versus time and were also reaI directly
from true rms meters as a reference.

b. 3-minute turbulence recordings for energy spectrum and proba-
bility analysis. A Nincom (Type ClOO) 7 channel FM rape recorder
was used to record the turbulence for both single and crossed
wires (3-channel simultaneous recording). The outpur of the
CSU-made hot wire anemometer has a dc level of one volt and an
rms value of the order of 0.05 volt. The dc level was too high
and the rms value too low for best operation of the tape recorder.
Therefore, an ac-amplifier was used to amplify the fluctuating
voltage and to eliminate the dc level. Furthermore, an atten-
uator was connected between the amplifier and the tape recorder
to adjust the recording voltage to 0.S volt rms.

The intercoanections of all instruments are shown in Fig. 8. The rms
values of the wires obtained from the rms-meter (RIMS II) before the
amplifier and attenuator (A+A). The recording voltage was read from
RMS II of Fig. 8.

Besides the data which have been taken at each test point, the .:on-
tinuous rms values for all three wires were also recorded on an x-y plotter.

Figure 10 is a typical continuous rms profile of e fur a single wire
at x = 12" . For the same station the rms profiles of e1  and e2
for wire I and wire 2, respectively, are shown in Figs. 11 and 12.

As long as the rms values for single wires and corssed wires were
known, the turbulence components uv' and the turbulent shear stress
u could be calculated from iq. 3, Eq. 11 and Eq. 13, respectively.

The measured rms values and the calculations of u2  v2  and
9V are shown in Table II. The profiles of these quantities are plotted
in Fig. 13.
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3.A Uctermination of Streamline Locations

'|can streamlines can be drawn so as to be always tangential to the
vectors of fluid velocity in a flow. Since a separation bubble existed
near the downstream side of the model, it was found desirable to first
determine a reference streamline in the outer part of the flow by joining
the direction of mean velocity vectors from station to station, and to
obtain lower streandines by integration, i.e., the integral Su dy = constant
below the reference streamline defined other streamline! .

The first streamline was found by using a hot wir'e in the following
arranoement. The heat transfer from hot wire to air dep(,,ds not only on
the Magnitude of the velocity, but also on the flow direction with respect
to the wire. The heat transfer from the wire is maximum when the flow is
perpendicular to the wire, minimum when the wire is parallel to the flow.
By rotating !.he hot wire and plotting the output of the hot wire anemometer
versus the rotating angle on an x-y plotter, a well-defined minimum was
found which could be used to define the flow direction.

The starting point of the reference streamline was arbitrarily set
at x° = 0, yo = 9.1" , the height of the second point was estimated by

yl - 2. sinAa (43)

Aa the direction of local velocity vector to the
0 free stream vector at first point

Z = the horizontal distance from the first point to
0 the second point

YO = height of the first point

In general the height of the point yn at station xn can be cal-

culated from the n-lth point when the height yn-1 , the angle An-1

and the distance n are known. We haven-I

y = >n-I - sn-l SinA cx- (44)

The first reference streamline was estimated in this manner, with the re-
sult shown on Fig. 5.

It is evident that this is not too satisfactory a method for deter-
mining the streamline. The method was difficult and time consuming, and
wrought with error due to the fact that the error in estimatiTng the height
was cumulative. Therefore, a different method was used, where" integration
starts at the floor. It is clear that outside of the separation region
the streamlines can be determined from velocity profiles by itegrating
up from the lower boundary.



According to cont inuit, the flow rate between two st rei rl ines it Av

section must be the same. t is known that the lower hounilary is : strmiine.
The loker boundary consists of three ,arts

(a) before separating the surface of the model hill, upstream
of separation

(b) between separation and reattachment the upper boundary
of the separat o: nubblc

(c) after reattachment , the fL ,_r.

In our flow field the part (a) and (c) are fixed and are well known. Thus,
a reference streamline can be found for regions (a) and (c) at some height
up, and the streamline Thbove the separation region (which is rather short)

can be found by fairing between the t.o curves following the trend of
the reference streamline measured by the previous method. The remainder
of the procedure of stream'ne construction is as was outlined above.
In this manner two streamlines are obtained, namely, (1) the measured
streamline starting 5" above the crest, which was constructed from the

reference streamline by applying the continuity equation, and (2) the
lower boundary. Between these two streamlines the flow rates are q

at any section. Some streamlines were interpolated between these two.

The streamlines and the separation region are shown in Fig. S.

3.5 Measurement of Turbulence Spectra

Spectra of the u'-component of the turbulent signal was obtained
by means of a .ruel and Kjaer spectrum analyzer (Type B F4 K 2109), with
occasional cross checks against results from a Technical Products Wave
Analyzer (Type TP 62). The former has a proportional band width,

pa,:sive filter system, while the latter works with a!r*tive constant

banowidth filters. Both set-ups for this evaluation re shown in Fig. 14.

3.6 Measurenont of Probability uei1ties

lhe probability density distribution of a single turbulent component

was measured with a Technical Products probability analyzer (Type TP 647),
Fig. 15. Joinc p.bability densities were measured with two of the above
analyzers coupled toizether so that one provided the gate for the joint
probtbility density obtained from the other, Fig. 16.

Normalization and calibration of probability analyzers were based
on a known input sine wave, whose -ms value is close to that of the hot-
wire turbulent signals. The probability density or a sine wave e=AsinO

whose phasc o is a random variable uniformly distributed on the intervi1

--to T- , is given by:
711

fe) - C1-( for e < A (45)

0 otherwise
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Since the normalizing process has made all the amplitudes of different

sine waves to be A = 41 1 in such a way that i

the lowest point of the sine-wave probability density is found to beIl
f(o, =A = 0.225 , which wa-sc for calibrating the x-y plotter.

An example is given in Fig. 17. As for the calculation after the analog
analysis, the main problem was to convert the measured ( values into
the real turbulent fluctuation units (in feet per second). A graphical
integration based on the second-moment of the probability density was
suggested as a proper approach, i.e.,

u. =F e. f(e.) de. (46)
.iI i

-J

where u. is the square of the rms value at point i and e. iF the

value obtained from the probability an alyzer.

The experimental data for probability densities were plotted, both
for probability densities of single quantities and for joint probability
densities. Instead of establishing a 3-dimensional distribution of joint
probability density, iso-probability density contour maps were plotted.

Conditional density functions were evaluated according to the definition,

f~v i') f(u' ,v') f(u" v') (7

Jf(u' f(ul,vl)dvlJ

and thus, the conditional probability density is given as

Prob u' < u'<_ u' + du', v'<v'<v' + dv]

f(v'!u' = ujdv' L 0 00 (48)

Prob u <u' _" u' + du'l
0 0

This equals the ratio of the mass in the differential element of Fig. 18
to the mass in the strip (u' , u' + du) . Thus, for a given u'0 0 0

the density f(v'/u' = u'i) is the u' - profile of joint density f(u'v')

normalized to make its area equal to 1 , (Fig, 18).

3.7 Measurement of S aceCorrelation Coefficients Along the Trajectories

Space correlations along trajectories were taken by passing the

outputs of two single hot-wire anemometers through a well-calibrated sum-
and-difference circuit instead of an analog multiplier (Fig. 19). The
calculatio'; were only based on the rms values of inputs and outputs of the
sum-and-difference circuit.
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Let U' 2  A 2 e 2  u'2 A 2  e
A 2

s c (e; e l D CD  vle - l

where A , A2  , are the calibration constants for hot-wire anemometers,

1 and 2, respectively, CS  , CD ,the calibration constants for sum iS)

and difference (D) circuits, Then

uL (__ _(x ) (S/Cs) 2 - (D!/C) 2

Rtxu) 2 = 4 D (49)
U 1 .U 2 2 4e1

yields a relation for the space correlations when is the distance of
point 2 from point 1, and x is the location of point I in the ceference
coordinate system.
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Chapter IV

'HtE EXPERIMENTAL RESULTS

The experimental work on this project was conducted in three
phases. These were:

1. Measurements of the mean wind vertical velocity profiles and
turbulen' intensities at selected points on the lee side of a sinusoidal
hill using the Army Wind Tunnel. This work has been reported by Plate
and Lin (1965), Another more detailed flow pattern will be given in
this chapter.

2. Determination of theoretical missile trajectories, corresponding
to mean wind conditions if the missiles werc fired from the lee side of a
scaled-up version of the two-dimensional ridge.

3. Determination in the wind tunnel of the characteristics of
the wind field at selected points along the scaled-down missile tra-
Jectories, in accordance with the theoretical development given in
Chapter 11.

A fourth phase, not reported here, will be to calculate the response
of the missile to the experimental wind fields determined in phase 3.

4.1 Determination of Mean Missile Trajectories

This work was conducted at the USA Ballistic Research aboratories,
Aberdeen, Maryland, u~ing the laboratory computing facilities and a six
degree of freedom multi-stage rocket traje Lory program.

The missile used for the mean t:ajectory calculation was a hypo-
t'etical gun-launched two-stage ant -tank missile. The gun launched
the missile at 1200 f/s. After a short delay, a booster section ignited,
the thrust from which accel',' ted t'ts missile to a velocity of 2100 f/s.
At that point, a sustainer motor ignited, the thrust from which kept the
missile at a constant velocity until it reache) a position about 1 km
from the launcher. In computer simulations, this missile was shown to
have a steady cross wind sensitivity of 0.36 mils angular deflection per
ft/sec of cross wind.

For the simulation study, the two-1i..:nsionql ridge used in the
tunnel was scaled up by a factor of 1200 to a ridge 400 ft high by 2000 ft
long. It was then assumed that missile launchers were emplaced at the
base of the ridge; halfway up the ridge, and at the top of the ridge.
All the launchers were pointed at targets oi, the lee side of the ridge,
the targets being 1 km from the launcher sites.
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The trajectories of missiles were simulated first for the no-wind
case and then for the case of the steady wind flowing over the ridge by
interpolating in the data from Plate and Lin (1965).

The missile trajectory data fro, these simulations were then sent
to Colorado State University to be used in further experimental work.
The characteristics of the wind fields along the trajectories, shown in
Fig. 3, generated in the above study, is discussed in this report.

4.2 Me&. Velocitie. and Streamline Pattern

Mean velocity distributions are shown in Fig. 5. The solid lines
indicate velocities measured with a pitot static tube, while the dashed
lines refer to hot-wire measurements. On the whole, the agreement be-
tween the two sets is good, even without any corrections for turbulence.
The small deviations might just as well be due to drift in the hot-wire
characteristics, which could never be fully eliminated.

Characteristic of the flow field is the strongly accelerated rwvq
above the crest of the model, which gives rise to the velocity maximum,
and the very sharp velocity gradients in the neighborhood of the separation
streamline. These velocity gradients interact with the turbulent shear
stress to cause a large increase in the amount of turbulent energy of
the fl.w.

Vertical mean velocities can be determined from the mean streamline
pattern shown in Fig. 5. The streamline pattern also shows the separation
region. Under the separation streamline, the velocity gradually decreases,
reaches zero and reverses direction. This can be inferred from the fact
that the discharge across any vertical section underneath the separation
streamline must be zero. The experimental data, however, fail to show
this behavior due to the fact that the pitot tube cannot measure any
backflows, while the hot-wire cannot distinguish the flow directions.

4.3 Turbulent Intensities and Shear Stresses

The turbulent quantities u' 2 and v' 2  , and the turbulent shearing
Isress uv' were plotted against y in Fig. 13. The turbulent quantity
w-7 was also determined at a number of points and generally behaved roughly
like the u-component. The shear stresses u w were calculated and found
to be negligibly small even in the bubble region. The profiles shown in
Fig. 13 have a strongly peaked shape in te neighborhood of the separation
streamline, especially for short distances from the separation point on
the hill slope. In general, the intensity profiles of u component based
on values which had not been corrected for the flow direction coincide
with those obtained by Plate and Lin (1965) and thus the reproductibility
of the turbulent flow field in the present tunnel is quite satisfactory.

4.4 Turbulence Spectra and Dissipation Rates

Turbulence spectra were evaluated for all points indicates in Fig. 9.
The signal is plotted in the form e/B vs. f (Fig. 20 through Fig. 28).

Here e82/B is the energy density, per liz , of the electrical signal
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from the hot wire as passed through the filter of bandwidth B and of

center frequency f of the spectrum analyzer. It differs from the
energy level of the turbulent motiorn by a calibration factor given by
the square of the slope of the calibration curve [U vs. E of the hot-
wire anemometer.

In the low frequency range, we notice a strikingly different
spectrum shape close to the hill crest (x = 0) as compared to the
results at 16 inches downstream. At short vertical distances from the
wall, the data close to the crest (Fig, 22) indicate a much slower drop-
off with frequency than the set of data shown in Fig. 25. In fact, there
seems to exist a well-developed region, between 40 and 200 cps, in which
the energy level decreases almost linearly. This behavior is character-
istic of strong interactions between mean flow and 'urbulence, i.e.,
of a flow when a lar-e amount of turbulence generation due to large
velocity gradient t.Jkes place. This behavior is not typical for other
boundary layer flows of the U.S. Army Wind Tunnel.

Due to strong noise levels of the magnetic tape recorders, the
part of the spectra corresponding to frequencies above 2000 Hz is not
usable. For large frequencies, but below 2000 Hz, the shape of the
spectrum is the same for all data. In fact, if the spectrum is plotted
in the similarity form of the universal equilibrium law of Kolmogoroff,
we find that the shape is identical for all data, and they collapse on
a single curve. This is illustrated in Figs. 29, 30, 31, 32 and 33, in
which the data of Figs 22, 23, 25, 26 and 28 have been replotted in
dimensionless form:

k = N.F(f) (50)

¢ is the non-dimensional spectral density, F(f) is the measured
spectral density at frequency f , and N is a conversion factor:

1/4 S1

Furthermore, K is the reference wave number based on the dissipation

K = ( ) (52)

As an estimate for the dissipation c we have used the isotropic

relationship:
l ul' = S U-2$u'(53

£ 15 V ') x 5vi2~

and also, the equivalent form

' U 15Kf(K) dK (54)

0
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where K is the wave nunmbrL

K 211f (55)

and UT is the mean velocity, as before. Dissipation rates calculated
from Eqs. (53) and (54) are shown in Fig. 34.

In Figs. 29, 30, 31, 32 and 33 we have also indicated the -5/3
law of the inertial subrange and the universal shape of the high fre-
quency and of the turbulence spectrum, in the form given by Sandborn
and Marshall (1963). It is-surprising to see that the high frequency
end of the spectrum in the highl disturbed boundar- layer of our case
is presented exactly by the high frequency shape of the undisturbed
turbulence in a boundary layer along a flat plate. Since Sandborn and
Marshall have demonstrated the perfect agreement of their spectra with
experimental results obtained in wind over ocean waves by Pond et al.,
(1963), it appears that this range of the spectrum is a universal feature
of all turbulent flows.

But the same conclusion cannot be drawn for the turbulence spectrum
in the inertial subrange. Pond et al., report that here a spectrum law
of the form is valid

NF(f) = k (56)

where k is a universal constant, about 0.46. For the data of this re-
port, it is found very near the crest of the model ',ill, this "constant"
is well enough verified, but at larger distances downstream, in the
region which derives its turbulence from the initially strong gradients
in the mean velocity across the separation streamline, the "constant"
seems to be substantially higher. At 16" (Fig. 31) downstream from the
hill -rest, the best fitting -5/3 law has a constant k of about 0.85.
It should be noted that in the velocity region where this is found the
turbulence level decreases rapidly with distance, indicating that the
awutt of energy generated locally is lower than that dissipated, i.e.,
the ratio of dissipation to generation

D (S7)

in this region is greater than one. iiis result thus is in qualitative
agreement with a result of Margolis and Lumley (1964). It has as yet,
however, not been shown that a universal relation exists between k and
D . Experiments are at present underway at Colorado State University
to investigate this point. That D might also be an important quantity
in modeling of atmospheric turbulence has been pointed out by Plate and
Lin (1966).
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The low frequency end of the spectrum is governed by the process
of energy extraction from the mean flow and depends on the local velocity
field. Similarity forms can, therefore, not be expected for the whole
spectrum. But the eddies associated with the low frequency end of the
spectrum input cause the most important dynamic effect on a missile during
its flight. Work is therefore in progress at CSU on relations between the
low frequency end of the spectrum and the local mean velocity field.

4.5 Probability Density Distributions

Two different sets of probability densities are given for the
points along the trajectories. These are probability densities of the
v', of the I components (Figs. 35-42), and joint probability densities
of u' and v' (Figs. 43-50).

The density of each individual turbuler,t component seems quite
well represented by a Gaussian (normal) curve except the mean value is
not exactly zero. This is illustrated by plotting cumulative probability
densities on probability papers (Figs. 51-54). The angle e of the joint
probability density contour as calculated by Eq. (26), which is based on
the assumption of a zero mean density, is surprisingly close to the
measured angle 0 obtained directly from the two-dimensional contour of
joint probability density (Table III). Most of probability densities
also show the evidence of skewness. Numerical evaluation of the skewness
factor is not necessary for this study, but the reason for this skewness
could always be interpreted as the result of the preferred direction of
fluctuation of the turbulence component due to the shear stresses. This
phenomenon could be strongly show for those points along the separationi streamline and somewhere within tl ,, bubble region because of the complex -

interactions of the three-dimensional turbulence.

Flatness of the probability density, which was suspected as the
esult of turbulent intermittency, was not obviously seen among our
measurements which were usually performed in the fully turbulent boundary
laver.

In order to check the statistical independence of w' from u'
joint probability density distributions f(u', w') are measured. As
mentioned in a previous section, the homogenuity of turbulence in
plane parallel to the ground requires that u'w' be zero, which was
confirmed by our experiments. But it is also necessary that for each
value of u' , f(w 'u') be independent of u' and equal to f(w').
To check this criterion (which gives a sufficient condition for sta-
tistical independence) we have plotted into one graph f(w'lu') for
different values of u' as well as f(w') Some results are -hown in
Figs. 55-59. 'They indicate that u' and w' are not exactly jointly
Gaussian, even though u' w' was found to be zero from hot wire measure-
ments, which is not a sufficient condition to conclude that w' is inde-
pendent of u' for the slightly non-Gaussian curves observed in this I
st udy.

We next checked joint probability density" distributions f(u'i, ),

Different results were obtaine gepending on the direction of the tra-
jectory. For a trajectorv of 60 azimuth these typical measurements
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are shown in Figs. 60-t2. The results indicate that no correlation exists
for turbulence components u'I and u', . This is evident from the co-
incidence of the axes of the elliptical contours with one of the axes. It
implies that the distance between the two points has becn chosen too wide,
so that Lhe integral length scale is somewhat smaller than the distance
between adjacent points.

For the case of 60 azimuth, the assumption of an elongated eddy
structure with u1' related only to u,' is not Justified. The only

way of obtaining an impact dispersion probability distribution is found
by assuming statistical independence between neighboring points along
the trajectory, with the resulting inconsistency in the averaging pro-
cedure for the average velocity encountered by the missile in traveling
from xi to xi  *

Wh-n joint probability densities for u'_ and u.l lying on a

trajectory in the mean wind direction (00 azimuth) are considered, strong
correlations are found as is demonstrated in Figs. 63-65. The results
are even better illustrated by considering directly the space correlation
functions along different trajectories, which are plotted in Fig. 66.
Two trajectories were added, trajectory 2 which starts halfway down the
hill slope, and trajectory 3 which starts at the crest of "be ridge.
For correlation functions which start at the hill directly, t--relation
distances are rather short: aiready at 1" downstream from the hill the
correlation between u0  and ul, , has decreased to a correlation co-

efficient r 0.2 , where

u u-

For correlations starting at larger values than x = 4" the correlation
coefficients for both traiectories seem to follo, a fairly constant
correlation curve, with approximately equal shape and furtnermore, with
a shape which is approximately exponential. The exponential curve which
appears to give the best fit has been sketched into the exptrimental
results. It is represented by the equation:

r e x ( 9

when a is a constant equal to 1.2 in . :his result implies that in
the outer region (further downstream than 4" from the riJge) the Joint
probability distribution f(u r , u: ) can be specified hy the macnitudes

u! and u'- and by the curve expressedby q::q. It U' and U'
by- I 1-l

can be approximately ropresented by Gaussianity. The latte \leds the
numerator, and the former the denominator of q. it i' i t ikirwi

the place of v' ,whiic u' Aes the nlace of ' u'; v
interpretation arises, however, if u. happens to he eqn i, or

h i to 'e 'q l"
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nearly equal to u 1  In that case, we may let ut = Au. and
i-I *1 1

ui= u 1  , where A is any positive constant factor in order to

either enlarge or contract the values of u. in such a way that u+
1 1

and u_1  are numerically quite different from Eq. (21) and assuming

again m = m = 0 for simplicity,

f(ui' ui-1) 1 iU+

f(ui+ U-l) f( U+) = qJ (ui' ui-1 ) 2rAa a u /1p

T L Fo u i c i )2(P Ii iexp ~ ~ u - / u(60)i. I (u

Now, following the same procedure in deriving our Eq. (26), we may obtain

2A u. u
Tan 20 1 i-I ((61)

A2 u.2- U-i
1 i-1

But this angle 0 can only be used to specify f(u+, u_ ,and of

course, f(ui, u i l can also be specified by a little transformation

technique.

For the region between 0 and 4" along the trajectory, it is
necessary to know the coefficient a for each length section, which can
approximately be found by linear interpolation. It is thereby assumed
that the correlation function is exponential between point xi and1!

xi Thus, even though at larger distances the same exponential does

not fit all the data, it is possible to make the assumption of Markoff
dependency over a short reach, with at least engineering accuracy.



Conc Iusions

In the report we have given experimental evidence that the
turbulence structure in the complicated flow field downstream of a
model hill can be represented to a good approximation by Gaussian and
jointly Gaussian probability distributions connected by space correla--
tion functions which appear exponential. The joint proba ity den-
sities are seen to be fully specified by the variances of the two
variables anI their first order cross correlation.

The -esults of this -udv indicate that it is possible to
construct a model of the --ssile dispersio probability distribution
by' simply' determining the variance of this distribution. Research
towards this objective is currently under way at CStLJ.

Io
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TABLE I

Mean Velocity Calculation

x y U x y U U
in pt in UHW u.T in pt in W P.T

2" 6 3.89 22.4 29.4 8tv 18 1.35 3.6
7 3.98 29.0 27.8 19 1.52 4.4 -

8 4.09 31.8 33.3 20 1.9 7,9 10.1
9 4.22 32.0 33,3 2! 2.0 10.6 11,9

10 4,68 31.8 32.9 22 2.16 13.6 15S
11 5.1 32.0 23 2.51 19.7 20.2

6.0 31.4 31.3 24 3.I'2 22.6 23.'
8.0 31.2 30.8 25 4.86 24.7 25,3
100 )io 30.7 6. 26.3 27.4
15.0 31.0 30.3 8. 27,2 28.3
20.0 30 9 30.6 10. 28.5 29.3
24.0 30.7 30,2 15, 29.5 30.2

20. 30.3 30.6
4" 12 3.35 16.2 19.2 24. 30.3 30.4

13 3.49 26.5 7F c
14 3.60 27.3 10" 0.05 1.15 1,707
15 3.84 29.0 29 .8 7 5.15 1.707
16 4.,63 29.0 29.7 1.15 7.96 8,18
17 5.25 29.8 29.7 1.65 i6.8 12.77

6.0 29.5 30.1 2.2 22.5 17.
8.0 30.3 30, 3.36 24, 23.35
!) 0 30.5 30.1 5.43 25.8 25.72
15.0 30.5 30.3 8. 27.3 26.72
20.0 31. 30.5 ,0. 28.5 28.2
24.0 30,7 30.5 15. 29.5 30,06

20. 30.6 31.
6" 2 46 10.2

2J53 16.6 8.18 12" 26 0,12 3.8 -
2.81 24.1 17.uo 27 0.73 5.9 5.12
3.29 26.2 23.22 28 1.12 8.0 9.2
4.0 27.4 24.58 29 I.0 11.1 13.3
6. 28,6 26.77 30 1,75 14.4 15.
8. 29.7 28.26 31 2.66 20.0 20.9

10. 30.4 29.2 32 5.00 24.0 26.2
15. 31.0 30.5 7.14 25,4 25.6
20. 31.4 31.16 9, 27. 27.4

12. 28.2 28.5
15. 28.9 29.5
23,3 29.9 30.3
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TABLE I (Continued)

x y Ux yin pt in UHW LiP.T in pt U Uin pt in HW P.T

14" 0.05 2,7 - 241 41 0.12 12. 12.81
.i8 4.14 - 44 1.06 15.8 17.31
.4 6.0 6.15 45 1.20 16.2 16.85
.62 7.96 8.86 46 2.73 18,8 20.25

1,05 11. 12,31 47 6.16 23.9 23.85
1.58 16.6 i5.55 8. 25.7 25.2
2.0 19. 17.16 10. 26.4 26.24
2.67 21.35 19.62 12.5 27.55 27.65
4. 22,64 22.44 15, 28.20 28.58
8. 26.8 26.4 20. 29.3 29.4
0. 27.5 27,64
i5. 28.9 29.58 32': 48 0.14 14. 14.02
20. 30.4 30.64 49 50 16.5 16.85

50 3,58 20.9 21,82
16" 33 0.12 5.8 9.66 51 6.74 24. 25.,

74 .28 8.4 11.32 10. 26.55 26.8
35 .69 10,2 13,87 12,5 27.1 27.3
36 .06 10,8 15.17 15. 28.1 28.56
37 1,56 13.8 18,07 20. 29.4 29,48
38 2,2 18.2 19.62
39 3.32 20. 22. 6 40" 52 0.1 14.5 15.4
40 6.5 23.8 25,9 53 2 16.5 16.57

8. 25.8 26,98 54 4,16 22.2 22.4
10. 27,8 28.5 55 6,32 23.9 24.44

15. 28.8 30. 7.5 25.1 24,75
20. 29.9 30,7 10. 26.2 26.3

U.1S 27.4 27.5
18" .05 7.4 9,66 15. 28.0 28.2

.13 9.55 11.45 20. 29.4 29.34

.37 10.95 1.2.66

.95 14.05 13.44
2, 19.5 17.4

2.9 20.85 20.42
4. 22.3 22.6
8. 26.3 26.42

10, 27.7 27.76
is. 29.5 29.6
20. 30.2 30.64
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TABLE TI

Tu-bulent Calculation

dU&2]

12 1F - -- du 12 - -

IL e ~ ZEW]

, r,
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TABLL 1i (Continued)

pt u' 2  
VU vw 2 ... .

21' 6 3.89 27.7 .227 18.51 -10.06 22.9 -.4557 3.98 26.5 .209 28.60 -11.89 13.9 -.071
8 4.09 3.37 .175 5.635 - 3.36 5.93 -.03679 4.22 2.46 .14 7.568 - 2.64 6.58 -.011

10 4.68 1.88 .105 1.869 - 0.657 4.92 -.00511 5.10 1.70 .0872 1.398 - 0.354 4.99 -.01410.00 .69 0349 0.6976 - 0.227 .230 -.028315.00 .388 .0175 0.1157 - 0.0574 .076 -.050517.00 .72 0.149 - 0.048 .081 +.05620.00 .019 - 0.0233 - .0095 .0113 +.067
4" 12 3.35 11.8 .314 19.42 -17.05 24.4 -.00213 3.49 8.48 .262 14.57 --12.16 18.62 -.01714 3.60 4.96 .244 3,345 - 2.372 8.95 +.000515 3.84 2.72 .244 2.542 - 1.405 4.27 -.0017,.6 4.63 2.20 .192 1.713 - 0.925 3.41 +.0505.25 1.90 .140 1.488 - 0.699 2.91 +.02110.00 1.09 .0175 0.604 - 0.362 .585 +.03613.00 0.69 - 0.29 - 0.147 .302 +-03615.00 .337 - .331 - 0.088 .077 +.04020.00 .028 .041 - .0094 .010 +.042

8" 18 1.35 1.90 .525 .432 - .611 2.36 -.04519 1.52 5.20 .489 1.26 - 1.161 3.28 +.075
20 1.90 11.85 .14 5.20 - 4.76 12.80 +.0475
21 2.00 19.54 .087 6.09 - 6.59 21.9 +.072522 2.1b 24.00 .035 22.0 - 7.86 28.5 +.077523 2.51 12.75 .0175 6.4 - 3.804 17.56 +.1224 3.12 4.99 .035 .956 - .467 1.15 +.037825 4.86 2.56 .035 .974 096 3.55 05.00 1.89 .035 .47 - .057 1.18 -.019

10.00 .743 .0175 .297 0.024 .355 +.02115.00 .388 .08 .074 .098 +.024517.50 .11 - .028 .0669 .012 +.001220.00 .028 - .013 .0087 .003 -.0035

12" 26 0.12 2.24 - .31 - 0.178 1.93 .02527 .73 8.78 .14 - ./6 10.72 .0828 1.12 16.3 .175 5.61 - 5.74 18.3") .142
29 1.50 25.3 .262 14.23 -14.96 19.9 .12330 1.75 30.3 .245 14.28 -15.84 Z1 . ,10231 2.60 6.2 .175 12.80 - 7.62 !1.2 .08532 7.14 1.42 .07 0 .79 .4 1 2. ,.08510.00 1.04 .035 .23 .175 .043 .043

15.00 .38 .0175 .20 - .112 .37 .033
18. .07 - .08o .12 0209 .033
20.00 .0186 .005 - .0085 .0136 0
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TABLE I1 (Continued)

x pt U'2 v'2  U'V' w'2  u'w'

16" 33 0.12 7.3 - 0.39 - 0.19 8.64 +.101
34 .28 10.55 - 15.55 - 2.51 15.7 .115
35 .69 19.0 - 15.05 - 4.06 18.6 .104
36 .96 17.4 - 16.35 - 7.08 19.5 .061
37 1.56 16.6 - 17.24 - 6.62 19.5 .037
38 2.20 12.1 - 19.65 - 7.13 17.2 .Od6
39 3.32 4.09 - 5.69 - 1.81 6.6 .021
40 6.50 1.48 - .998 - .423 1.5 .047

10.0 .84 - .S51 - .223 .21 .033
15.0 .242 - .186 - .,04 .15 .045
18.0 .109 - .102 - .0462 .022 .008
20.0 .0275 - .000 - .0031 .019 .003

24" 41 .12 9.12 5.33 - .582
44 1.06 14.0 4.00 - 2.63
45 1.2C 13.8 - 4.05 - 2.86
46 2.73 8.29 - 5.31 3.33
47 6.16 2.27 - .70 - .664

10.0 .755 - .565 - .16
12.50 .60 - .55 - .247
15.0 .302 - .433 - .139
20.0 .040 - 0 - .0071

32" 48 .14 5.26 - 2.86 - .935
49 .50 7.33 - 2.42 - 1.21
so 3.58 6.02 - 5.08 - 3.00
SI 6.74 2.025 - .975 - .528

10.0 1.221 - .159 - .268
12.5 .735 - .025 .0413
15.0 .302 - .236 - .075
20.0 .00t - .015 .00136

40" 52 A10 4.72 - 6.38 3,29
53 .20 4.94 - 5.51 2.29
54 4.16 4.88 - 3.b7 2.03
55 6.32 2.40 - 1.76 .915

10.0 1.29 - 07 .193
12.5 .72 - .17S .044
15.0 .42 .176 .0615

20.0 .057 - .019 0
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'ABLE III

-1 2 uV'
e = 1/2 tan -2 -,2

x z y -vT

pt (in) (in) (in) v (deg)

12 4 4R 3.35 16.2 11.80 19.42 -17.05 38.7
14 4 4R 3.60 27.3 4.96 3.35 - 4.74 35.6
21 8 4R 2.00 10.6 19.54 6.09 - 6.09 21.2
22 8 4R 2.16 13.6 24.00 22.00 - 7.86 41.3
24 8 4R 3.12 22.6 4.99 0.96 - 0.47 2.8
27 12 4R 0.73 5.9 8.78 0.14 - 0.76 5.0
28 12 4R 1.12 8.0 16 30 5.61 - 5.74 23.5
30 12 4R 1.75 14,4 30.30 14.28 -15.84 31.5
31 12 4R 2.66 20,0 6.20 12.80 - 7.62 33.3
33 16 41 0.12 5.8 7.30 0.39 - 0.19 1.0
36 i6 4R 0. o6 10.8 17.40 16.35 - 7.03 41.7
37 16 4R 1.56 13.8 12.10 19.65 - 7.15 45.0
38 16 4R 0.96 10.8 16.60 17.24 - 6.02 31.0
44 24 4R. 1,06 17.9 12.10 19.65 - 7.13 13.9
48 32 4K 0.14 13,22 5.26 2,86 - 0.94 19,0
49 32 4R 0.51) 17.08 7.33 2.42 - 1.24 13.4
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